On edge-sets of bicliques in graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On edge-sets of bicliques in graphs

A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edgebiclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) ...

متن کامل

On restricted edge-colorings of bicliques

We investigate the minimum and maximum number of colors in edge-colorings of Kn,n such that every copy of Kp,p receives at least q and at most q′ colors. Along the way we improve the bounds on some bipartite Turán numbers.

متن کامل

full edge-friendly index sets of complete bipartite graphs

‎‎let $g=(v,e)$ be a simple graph‎. ‎an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$‎, ‎where $z_2={0,1}$ is the additive group of order 2‎. ‎for $iin{0,1}$‎, ‎let‎ ‎$e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$‎. ‎a labeling $f$ is called edge-friendly if‎ ‎$|e_f(1)-e_f(0)|le 1$‎. ‎$i_f(g)=v_f(...

متن کامل

Distances between bicliques and structural properties of bicliques in graphs

A biclique is a maximal bipartite complete induced subgraph of G. The biclique graph of a graph G, denoted by KB(G), is the intersection graph of the family of all bicliques of G. In this work we give a natural definition of the distance between bicliques in a graph. We give a useful formula that relates the distance between bicliques in a graph G and the distance between their respectives vert...

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2012

ISSN: 0166-218X

DOI: 10.1016/j.dam.2012.02.004