On edge-sets of bicliques in graphs
نویسندگان
چکیده
منابع مشابه
On edge-sets of bicliques in graphs
A biclique is a maximal induced complete bipartite subgraph of a graph. We investigate the intersection structure of edge-sets of bicliques in a graph. Specifically, we study the associated edge-biclique hypergraph whose hyperedges are precisely the edge-sets of all bicliques. We characterize graphs whose edgebiclique hypergraph is conformal (i.e., it is the clique hypergraph of its 2-section) ...
متن کاملOn restricted edge-colorings of bicliques
We investigate the minimum and maximum number of colors in edge-colorings of Kn,n such that every copy of Kp,p receives at least q and at most q′ colors. Along the way we improve the bounds on some bipartite Turán numbers.
متن کاملfull edge-friendly index sets of complete bipartite graphs
let $g=(v,e)$ be a simple graph. an edge labeling $f:eto {0,1}$ induces a vertex labeling $f^+:vtoz_2$ defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where $z_2={0,1}$ is the additive group of order 2. for $iin{0,1}$, let $e_f(i)=|f^{-1}(i)|$ and $v_f(i)=|(f^+)^{-1}(i)|$. a labeling $f$ is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. $i_f(g)=v_f(...
متن کاملDistances between bicliques and structural properties of bicliques in graphs
A biclique is a maximal bipartite complete induced subgraph of G. The biclique graph of a graph G, denoted by KB(G), is the intersection graph of the family of all bicliques of G. In this work we give a natural definition of the distance between bicliques in a graph. We give a useful formula that relates the distance between bicliques in a graph G and the distance between their respectives vert...
متن کاملOn (Semi-) Edge-primality of Graphs
Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2012
ISSN: 0166-218X
DOI: 10.1016/j.dam.2012.02.004